

... to better understand climate sensitivity

e.g., Forster and Gregory, 2006; Lin et al., JQSRT, 2010; Murphy, 2010 all fluxes in this analysis are downward positive

CERES top-of-atmosphere (TOA) net flux SSF, 1-deg monthly avg., Ed. 2.5

all fluxes in this analysis are downward positive

$$\Delta R_q = \sum_{x,y,z} \frac{\partial R}{\partial q(x,y,z)} \Delta q(x,y,z)$$

$$\Delta R_q = \sum_{x,y,z} \frac{\partial R}{\partial q(x,y,z)} \Delta q(x,y,z)$$

water vapor anomaly

Use pre-computed kernels from Soden et al., 2008, see also Shell et al. [2008]

$$\Delta R_q = \sum_{x,y,z} \frac{\partial R}{\partial q(x,y,z)} \Delta q(x,y,z)$$
water vapor anomaly

Use pre-computed kernels from Soden et al., 2008, see also Shell et al. [2008]

$$\Delta R_T = \sum_{x,y,z} \frac{\partial R}{\partial T(x,y,z)} \Delta T(x,y,z)$$

Wednesday, April 27, 2011

Regress energy trapped by e.g., q vs. surface temperature

Dessler et al., GRL, 2008 Dessler and Wong, J. Clim., 2009

Dessler et al., GRL, 2008 Dessler and Wong, J. Clim., 2009

Temperature feedback

albedo feedback

Fig. 2. (A) Scatter plot of monthly average values of $\Delta R_{\rm cloud}$ versus $\Delta T_{\rm s}$ using CERES and ECMWF interim data. (B) Scatter plot of monthly averages of the same quantities from 100 years of a control run of the ECHAM/MPI-OM model. In all plots, the solid line is a linear least-squares fit and the dotted lines are the 2σ confidence interval of the fit.

Dessler, 2010

Explains 52% of variance

52%

25%

12%

8%

3%

	EOF 1	EOF 2	EOF 3	EOF 4	EOF 5	total
dR_T	-2.91	-0.36	0.08	-0.17	0.24	-3.12
dR_q	1.42	80.0	-0.03	-0.32	0.04	1.18
dR _{cloudLW}	0.94	-0.71	0.22	-0.01	-0.02	0.42
dR _{cloudSW}	-1.36	1.47	0.29	-0.21	-0.08	0.11

tropical + extratrop T

	EOF 1	EOF 2	EOF 3	EOF 4	EOF 5	total
dR_T	-2.91	-0.36	0.08	-0.17	0.24	-3.12
dRq	1.42	0.08	-0.03	-0.32	0.04	1.18
$dR_{cloudLW}$	0.94	-0.71	0.22	-0.01	-0.02	0.42
dR _{cloudSW}	-1.36	1.47	0.29	-0.21	-0.08	0.11

Water vapor feedback is primarily a "tropical" phenomenon

Change in R per unit change in q(x,y,z): $\Delta R/\Delta q(x,y,z)$

Water vapor feedback is primarily a "tropical" phenomenon

Change in R per unit change in q(x,y,z): $\Delta R/\Delta q(x,y,z)$

	EOF 1	EOF 2	EOF 3	EOF 4	EOF 5	total
dR_T	-2.91	-0.36	0.08	-0.17	0.24	-3.12
dRq	1.42	0.08	-0.03	-0.32	0.04	1.18
$dR_{cloudLW}$	0.94	-0.71	0.22	-0.01	-0.02	0.42
dR _{cloudSW}	-1.36	1.47	0.29	-0.21	-0.08	0.11

	EOF 1	EOF 2	EOF 3	EOF 4	EOF 5	total
dR_T	-2.91	-0.36	0.08	-0.17	0.24	-3.12
dR_q	1.42	0.08	-0.03	-0.32	0.04	1.18
dR _{cloudLW}	0.94	-0.71	0.22	-0.01	-0.02	0.42
dR _{cloudSW}	-1.36	1.47	0.29	-0.21	-0.08	0.11

Effect of clouds on top-ofatmosphere (TOA) flux

- I) reduce incoming solar: cool
- 2) reduce outgoing IR: warm

net effect is the difference between these effects

in today's atmosphere, clouds reduce net energy in to the Earth by 20 W/m² (also known as cloud radiative forcing)

how will this change in a future climate?

if changing clouds further reduce TOA downward net flux, this is a negative feedback

if changing clouds increase TOA downward net flux, this is a positive feedback

-2.333

-3.000

2.00000 1.55555 1.11111 0.66666

-0.2222 -0.666

LW EOF 1

Covariance of PC1 vs. time series at each grid point of LW and SW energy trapped by clouds

SW EOF 1

120°E

180°

120°W

30°N

30°S

60°S

Conclusions

- Clouds that make it difficult to accurately determine how TOA flux anomaly varies with surface temperature
 - they correlate poorly with surface T
 - next steps: use EOF analysis to gain insight into the factors that regulate clouds
 - goal is to improve estimate of clouds vs. T
- Water vapor and temperature are well behaved

LW EOF 2

SW EOF 2

LW EOF 3

SW EOF 3

Feedback W/m²/K

	EOF 1	EOF 2	EOF 3	EOF 4	EOF 5	total
dR_T	-2.91	-0.36	0.08	-0.17	0.24	-3.12
dR_q	1.42	80.0	-0.03	-0.32	0.04	1.18
dR _{cloudLW}	0.94	-0.71	0.22	-0.01	-0.02	0.42
dR _{cloudSW}	-1.36	1.47	0.29	-0.21	-0.08	0.11

to determine ΔR_{cloud}

- start with cloud radiative forcing (Δ CRF); change in TOA flux if clouds are removed
- $\Delta CRF = (\Delta R_{clear-sky} \Delta R_{all-sky})$
- ΔCRF can also be affected by changes in T, q, albedo, radiative forcing
- Soden et al. [2008] adjustment to get ΔR_{cloud} from ΔCRF ; see also Shell et al. [2008]

$$\Delta R_{\text{cloud}} = \Delta CRF + (K^{0}_{T} - K_{T})dT + (K^{0}_{W} - K_{W})dW$$
$$+ (K^{0}_{a} - K_{a})da + (G^{0} - G).$$

$$\begin{split} \Delta R_{cloud} &= \left(\Delta R_{clear-sky} - \Delta R_{all-sky} \right) + (K^{0}{}_{T} - K_{T}) dT + (K^{0}{}_{W} - K_{W}) dW \\ &+ (K^{0}{}_{a} - K_{a}) da + (G^{0} - G). \end{split}$$

cloud radiative forcing

$$\begin{split} \Delta R_{cloud} &= \left(\Delta R_{clear-sky} - \Delta R_{all-sky} \right) + (K^{0}{}_{T} - K_{T}) dT + (K^{0}{}_{W} - K_{W}) dW \\ &+ (K^{0}{}_{a} - K_{a}) da + (G^{0} - G). \end{split}$$

cloud radiative forcing

$$\begin{split} \Delta R_{cloud} &= \left(\Delta R_{clear-sky} - \Delta R_{all-sky}\right) + (K^0_T - K_T)dT + (K^0_W - K_W)dW \\ &+ (K^0_a - K_a)da + (G^0 - G). \end{split}$$

adjustment terms

A few lessons

- This scatter is real
- Another few years of data will not help
- We must study modes of cloud variations that are NOT related to surface T variations
 - e.g., MJO
- Models correctly simulate the scatter

short-term cloud feedback intercomparison

 The relation between TOA net flux and surface temperature is highly uncertain

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature
- More data will not help for decades

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature
- More data will not help for decades
- We must understand what's driving ΔR_{cloud} that are not related to T_s variations

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature
- More data will not help for decades
- We must understand what's driving ΔR_{cloud} that are not related to T_s variations
- Future sounding missions might want to focus on this question

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature
- More data will not help for decades
- We must understand what's driving ΔR_{cloud} that are not related to T_s variations
- Future sounding missions might want to focus on this question

- The relation between TOA net flux and surface temperature is highly uncertain
- One primary reason for this is the scatter in the cloud feedback
- ullet ΔR_{cloud} does not correlate well with surface temperature
- More data will not help for decades
- We must understand what's driving ΔR_{cloud} that are not related to T_s variations
- Future sounding missions might want to focus on this question
- This work was supported by NASA grant NNX08AR27G to TAMU

ECMWF-interim reanalysis 3/2000-2/2010

Model	Total		Long wave		Short wave		Long-term cloud feedback	Climate sensitivity
	Cloud feedback	r^2	Cloud feedback	r^2	Cloud feedback	r^2		
FGOALS-g1.0	1.24±0.16	28%	0.92±0.08	48%	0.32±0.15	3%	N/A	2.3
PCM	1.11±0.20	10%	0.52±0.11	7%	0.60±0.21	3%	0.18	2.1
IPSL-CM4	1.05±0.16	12%	1.17±0.13	21%	-0.12±0.14	0.2%	1.06	4.4
INM-CM3.0	0.98±0.18	9%	0.77±0.10	15%	0.21±0.19	0.4%	0.35	2.1
UKMO-HadCM3	0.88±0.31	5%	0.57±0.15	9%	0.31±0.35	0.5%	1.08	3.3
ECHAM/MPI-OM	0.74±0.20	4%	0.97±0.09	27%	-0.23±0.20	0.4%	1.18	3.4
CCSM3	0.62±0.26	2%	0.17±0.12	0.9%	0.45±0.25	1%	0.14	2.7
GFDL-CM2.1	0.34±0.20	0.9%	0.40±0.08	8%	-0.06±0.23	0%	0.81	3.4
GFDL-CM2.0	0.15±0.20	0.2%	-0.63±0.10	11%	0.78±0.21	4%	0.67	2.9
ECMWF-CERES	0.54±0.72	1.9%	0.43±0.45	3.0%	0.12±0.78	0.1%	N/A	N/A
MERRA-CERES	0.46±0.75	1.3%	0.27±0.47	1.2%	0.19±0.76	0.2%	N/A	N/A

$CRF = R_{all-sky}-R_{clear-sky}$ CRF = 0

$CRF = R_{all-sky}-R_{clear-sky}$ $CRF \neq 0$

